Arrays

e Objectives - when we have completed this set
of notes, you should be familiar with:

= array declaration and use

= bounds checking and capacity

= arrays that store object references
= command-line arguments

= variable length parameter lists

= multidimensional arrays

Arrays

e An array is a container object that holds a
fixed number of values of a single type.

scores | 19879482 67|98|87|81|74]|91
/‘ o 1 2 3 4 5 6 7 8 9

The entire array '\
is referenced by a
single variable Each value has a numeric index
name

An array of length n is indexed from O to n-1

This array holds 10 values that are indexed from 0 to 9

Declaring Arrays

e The scores array could be declared as follows:

int[] scores = new int[10];

» The type of the variable scores is int[]

(an array of int or an int array); when you see [],
think or say array

= The reference variable scores is set to a new array

object that holds 10 values of type int; note the use of
the new operator with the type[length]

e The array is part of the Java language (whereas
ArrayList is a class in the Java class libraries as
described in the Java API)

Alternate Array Syntax

e The brackets of the array type can be

associated with the element type or with the
name of the array:

float[] prices;

float prices]];

e The first format generally is more readable
and should be used

e Remember - Whenever you see [] brackets

(a.k.a., square brackets) in Java, think or say
array!

Arrays

e The values held in an array are called array
elements

= The element type can be a primitive type or a
reference type

The declaration of an array variable does not
create the array object; but rather only a
variable that can reference the array

char|[] letters;

e The new operator creates (or instantiates) the
array with the specified number of elements

letters = new char|[5];

Accessing Array Elements

e Elements are accessed using the array name followed by
the index in brackets

e The expression scores[2] evaluates to the value 94

$ T]scores
79 o7 |4 oz |7 os [or o1 7401
0 1 2 3 4 5] 6 7 8 9

Examples:

int singleScore = scores|[2];
System.out.println ("3rd score: " + scores|[2]);
double avg = ((double) scores[0] + scores[l]) / 2;

Using Arrays

e The length variable can be accessed to get the length of
the array, for example in interactions:

» 1int[] scores = new int[1l0];
» scores.length
10
The for loop can be used when processing array
elements
for (int 1 = 0; 1 < scores.length; 1i++) {

System.out.println (scores[1i]);

}

e The for each loop can also be used with arrays:

for (int currentScore : scores) {
System.out.println (currentScore)

Arrays

Ways to depict the scores array on canvas in JGRASP

§E]scores
79 | 87 | 94 | 82 | 67 | 98 | 87 | 81 | 74 | 91
0 1 2 3 4 5 6 7 8 9
Presentation viewer
$E]scores $E]scores $E]scores
[01=79 [0]
0 o (1]
87 [2] = 94
1 [3] = 82 [2]
2| 94 [4] = 67 a
[5] = 98
3] 82 [6] = 87 [4]
a4l 67 [7]1= 81 [5]
5| 98 [8] =74 [6]
[9] = 91
6| 87 7
Array Elements viewer
7| 81 y 8]
g| 74 (<]
9| 91 Basic viewer

Presentation viewer (rotated)

$E]scores
[79,87,94,82,67,98,87,81,74,91]

Presentation String viewer

$E]scores

¢ [l > (obj 462 - int[10]) int]
A [0]=79 : int
A [1]=87 : int
A [2]=94 - int
A [3]=82 : int
A [4]=67 : int
A [51=98 : int
A [6]=87 - int
A [7]1=81 : int
A [8]=74 : int
A [9]1=91 : int

Detail (or debug) viewer

ScoresExample.java

Setting Array Elements

e Individual array elements are also assigned using the
array name followed by the index in brackets

e Example: declare a double array and assign elements

double[] gradeBook

gradeBook [0]

gradeBook [3]

94 .

98.

1;

new double[4];

0.0

0.0

0.0

0.0

0

1

2

94.2

0.0

0.0

0.0

94.2

0.0

0.0

98.1

1

2

Arrays

e When an array is created, the initial value of
each array element depends on the type.

= Numerical elements (including char) are initialized to
zero (0, 0.0, or \0) #tlorades

00 | 0.0 | 0.0 |00

double[] grades = new double[4];

0 1 2 3

$T]statuses

= boolean values are initialized to false

boolean|[] statuses = new boolean[3];

false | false | false

0 1 2

= In a reference type array, each element is initialized

to null FElnames
String[] names = new String[3];

Coin[] change = new Coin[4]; I; I: I;I
CableAccount|[] accounts = new CableAccount[3];

ArrayExamples.java

Arrays - 10

Initializer Lists

e An initializer list can be used to instantiate and
fill an array in one step

= The size of the array is determined by the number of
items in the initializer list

= It can only be used when declaring the array.

e Examples: #Elunits

int[] units = {147, 323, 89, 933}; || M7[323]so |sss
0 1 2 3

char|[] letterGrades = {'A', 'B', 'C', 'D', "F'};
$E]letterGrades

A B C D F o] _ .
T 2 3 a InitializerListExample.java

csd‘ Arrays - 11

Bounds Checking

e Once an array is created, it has a fixed size

= An index used in an array reference must specify a
valid element from 0 to length - 1

e When a program runs, the Java interpreter
throws an ArrayIndexOutOfBoundsException

if an array index is out of bounds
e This is called automatic bounds checking

e Common in off-by-one errors:
for (int i = 0; iscores.length; 1++) |

System.out.println (scores[1]);

CS"l: Arrays - 12

More on Arrays of Objects

e When the elements of an array are object references,

they are initialized to null (i.e., no objects are created).
For example, below no String objects are created:

String[] colors = new Stringl[5];
- - . . - null value
0 1 2 3 4

Each object element stored in an array must be
instantiated separately

colors[2] = new String("Blue");
colors[0] = "Red"; // String objects only

Red Blue

Arrays - 13

Arrays as Parameters

e An entire array can be passed as a parameter

to a method or returned to the client program
(parameters are passed by value in Java).

public Polygon (double|[] sidesIn)
public void setSides (double|[] sidesIn)

public double|[] getSides()

See Polygon.java

Since parameters are passed by value, the
parameter sidesIn becomes an alias for the

array passed in

Arrays - 14

VVVyYVYYVY

PolygonCheck.java

“"Aliases”

Any reference variable passed as a parameter
becomes an alias for the object passed in. This
was not as important with Strings since they
are immutable, but arrays and other objects
can be accessed/modified via an alias so care
must be exercised to avoid unexpected results.

For example, try the following code in
iInteractions:

double[] sidesl = {5.4, 2.3, 5.7, 4.5};
Polygon shape = new Polygon(sidesl);
double[] sides2 = shape.getSides();
sides2[0] = -1;

double[] sides3 = shape.getSides();
sides3[0]

-1.0

Arrays - 15

“"Aliases”

e Recall that encapsulation is achieved by
objects "protecting and managing” their own
information.

e If you return a reference to an array object (or
any object) in a method and it is modified by a
client program, does it support encapsulation?

e Lesson: be careful with reference variables as
parameters and return values

T
e
e

Array vs. Arraylist

ne Arraylist class has a field named
ementData which is an array that holds the

ements in the ArraylList.

The ArraylList class provides methods for add,
get, size, remove, iIsEmpty, contains, etc. to
manage the elementData array

For array types, the programmer must manage

array by providing the operations above as
needed

The array is defined in most high level
languages; whereas the Arraylist is provided in
the Java class library, and thus is an extension to
the Java language.

Array vs. Arraylist

Recall that the length of an array object cannot
be changed. Thus, you would have to create a

whole new array with the new length and copy
all of the elements over.

To insert an element at the index i of the array,
you'll have to copy (move) the elements to the
right to make room for the new element and
increase the number of elements by one

To delete an element at the index i in the array,
you'll have to copy (move) the elements to the
right of the element over one to the left and
reduce the number of elements by one

See deleteTriangle method in TriangleList2.java

Command-Line Arguments

e The signature of the main method indicates that it takes
an array of string objects as a parameter

public static void main(String[] args)

e The args array comes from command-line arguments
that are provided when the Java interpreter is invoked
(for example, in the command prompt or terminal)

Arrays - 19

Command-Line Arguments

e Consider running the PolygonClassifier program:

TR)

C:\>java PolygonClassifier 43.2 78.6 34.2

You entered the following sices:

43 .2

Name of class args[0] args[1] args[2]

e For ease of testing your program, command line
arguments can also by passed in via jGRASP.
PolygonClassifier.java

Arrays - 20

Variable Length Parameter
Lists

e Suppose we wanted to create a method that processed
a different amount of data from one invocation to the
next

e For example, let's define a method called average that
returns the average of a set of integer parameters

// one call to average three values
meanl = average (42, 69, 37);

// another call to average seven values
mean2 = average (35, 43, 93, 23, 40, 21, 75);

Arrays - 21

Variable Length Parameter
Lists

e We could define multiple versions of the
average method (each taking a different

number of parameter inputs)

= Downside: a separate version of the method would
be needed for each parameter count

e We could define the method to accept an array
of integers

= Downside: an array would need to be created and
initialized prior to calling the method each time

e Instead, Java provides a convenient way to
create a variable length parameter list

Cs:j' Arrays - 22

Variable Length Parameter
Lists

e We can define a method to accept any number of
parameters of the same type

e The parameters are automatically put into an array
with a specified variable name

Indicates a variable length parameter list

public double average (int ... list)
element array
type name

CS 4 Arrays - 23

Variable Length Parameter
Lists

public double average (int ... list)

{
double result = 0.0;

if (list.length !'= 0) {
int sum = 0O;
for (int num : list) {

sum += num;

}
result = (double) sum / list.length;

}

return result;

VariableParams.java

Arrays - 24

Variable Length Parameter
Lists

e The type of the parameter can be any
primitive type or object type

public String allPolygons (Polygon ... polygonSet) {
String output = "";
for (Polygon shape : polygonSet) {
output += shape + " ";

}

return output;

CS"F Arrays - 25

Variable Length Parameter
Lists

e A method that accepts a variable number of
parameters can also accept other parameters

e The following method accepts an int, a
String object, and a variable number of
double values into an array called nums

public void test (int count, String name, double ... nums)

csd: Arrays - 26

Variable Length Parameter

Lists

A method can only accept one variable length
parameter list

If there are other parameters, the variable

length
formal

A varia

parameter list must come last in the
varameters

ble length parameter list can also be

used with constructors

See Family.java in the book.

Two-Dimensional Arrays

e A one-dimensional array stores a list of
elements

e A two-dimensional array can be thought of as
a table of elements, with rows and columns

one
dimension

l

two
dimensions

l

Two-Dimensional Arrays

e A two-dimensional array is an “array of arrays”

e A two-dimensional array is declared by
specifying the size of each dimension
separately:

int[]][] scores = new int[12][50];

e A single element is referenced using two index
values:

int value = scores[3][6];

e The array stored in one row can be specified
using one index

int[] valueSet = scores|[3];

Two-Dimensional Arrays

Expression Type Description
table int[][] 2D array of integers,
or
array of integer arrays
table[5] int[] array of integers
table[5] [12] int integer

e Examples:
TwoDArraySumElements.java
TwoDArraySumElementsForEach.java

TwoDArraySums.java

cs.fd; Arrays - 30

Multidimensional Arrays

e An array can have many dimensions - if it has
more than one dimension, it is called a
multidimensional array

e Because each dimension is an array of array
references, the arrays within one dimension can
be of different lengths

= these are sometimes called ragged arrays

int[] [] raggedExample = { {1,2,3,4},
{5,060},
{7,8,9} }7

Arrays - 31

