
Arrays - 1

Arrays

• Objectives - when we have completed this set
of notes, you should be familiar with:
§ array declaration and use
§ bounds checking and capacity
§ arrays that store object references
§ command-line arguments
§ variable length parameter lists
§ multidimensional arrays

Arrays - 2

Arrays
• An array is a container object that holds a

fixed number of values of a single type.

0 1 2 3 4 5 6 7 8 9

79 87 94 82 67 98 87 81 74 91

An array of length n is indexed from 0 to n-1

scores

The entire array
is referenced by a

single variable
name

Each value has a numeric index

This array holds 10 values that are indexed from 0 to 9

Arrays - 3

Declaring Arrays
• The scores array could be declared as follows:

int[] scores = new int[10];

§ The type of the variable scores is int[]
(an array of int or an int array); when you see [],
think or say array

§ The reference variable scores is set to a new array
object that holds 10 values of type int; note the use of
the new operator with the type[length]

• The array is part of the Java language (whereas
ArrayList is a class in the Java class libraries as
described in the Java API)

Arrays - 4

Alternate Array Syntax
• The brackets of the array type can be

associated with the element type or with the
name of the array:

float[] prices;

float prices[];

• The first format generally is more readable
and should be used

• Remember - Whenever you see [] brackets
(a.k.a., square brackets) in Java, think or say
array!

Arrays - 5

Arrays
• The values held in an array are called array

elements
§ The element type can be a primitive type or a

reference type

• The declaration of an array variable does not
create the array object; but rather only a
variable that can reference the array
char[] letters;

• The new operator creates (or instantiates) the
array with the specified number of elements
letters = new char[5];

Arrays - 6

Accessing Array Elements
• Elements are accessed using the array name followed by

the index in brackets

• The expression scores[2] evaluates to the value 94

Examples:

int singleScore = scores[2];
System.out.println("3rd score: " + scores[2]);
double avg = ((double) scores[0] + scores[1]) / 2;

Arrays - 7

Using Arrays
• The length variable can be accessed to get the length of

the array, for example in interactions:
Ï¼ÏÏint[] scores = new int[10];
Ï¼ÏÏscores.length
ÏÏÏÏ10
The for loop can be used when processing array
elements

• The for each loop can also be used with arrays:

for (int i = 0; i < scores.length; i++) {
System.out.println (scores[i]);

}

for (int currentScore : scores) {
System.out.println (currentScore);

}

Arrays - 8

Arrays
Ways to depict the scores array on canvas in jGRASP

ScoresExample.java

Arrays - 9

Setting Array Elements
• Individual array elements are also assigned using the

array name followed by the index in brackets

• Example: declare a double array and assign elements

double[] gradeBook = new double[4];

gradeBook[0] = 94.2;

gradeBook[3] = 98.1;

Arrays - 10

Arrays
• When an array is created, the initial value of

each array element depends on the type.
§ Numerical elements (including char) are initialized to

zero (0, 0.0, or \0)
double[] grades = new double[4];

§ boolean values are initialized to false
boolean[] statuses = new boolean[3];

§ In a reference type array, each element is initialized
to null
String[] names = new String[3];

Coin[] change = new Coin[4];

CableAccount[] accounts = new CableAccount[3];

ArrayExamples.java

Arrays - 11

Initializer Lists
• An initializer list can be used to instantiate and

fill an array in one step

§ The size of the array is determined by the number of
items in the initializer list

§ It can only be used when declaring the array.

• Examples:
int[] units = {147, 323, 89, 933};

char[] letterGrades = {'A', 'B', 'C', 'D', 'F'};

InitializerListExample.java

Arrays - 12

Bounds Checking
• Once an array is created, it has a fixed size

§ An index used in an array reference must specify a
valid element from 0 to length - 1

• When a program runs, the Java interpreter
throws an ArrayIndexOutOfBoundsException
if an array index is out of bounds

• This is called automatic bounds checking

• Common in off-by-one errors:
for (int i = 0; i <= scores.length; i++) {

System.out.println (scores[i]);
}

Arrays - 13

More on Arrays of Objects
• When the elements of an array are object references,

they are initialized to null (i.e., no objects are created).
For example, below no String objects are created:

String[] colors = new String[5];

• Each object element stored in an array must be
instantiated separately

colors[2] = new String("Blue");
colors[0] = "Red"; // String objects only

null value

Arrays - 14

Arrays as Parameters
• An entire array can be passed as a parameter

to a method or returned to the client program
(parameters are passed by value in Java).

public Polygon(double[] sidesIn)

public void setSides(double[] sidesIn)

public double[] getSides()

• See Polygon.java

• Since parameters are passed by value, the
parameter sidesIn becomes an alias for the
array passed in

Arrays - 15

“Aliases”
• Any reference variable passed as a parameter

becomes an alias for the object passed in. This
was not as important with Strings since they
are immutable, but arrays and other objects
can be accessed/modified via an alias so care
must be exercised to avoid unexpected results.

• For example, try the following code in
interactions:

PolygonCheck.java

Ï¼Ï double[] sides1 = {5.4, 2.3, 5.7, 4.5};
Ï¼ÏÏPolygon shape = new Polygon(sides1);
Ï¼ÏÏdouble[] sides2 = shape.getSides();
Ï¼ÏÏsides2[0] = -1;
Ï¼ÏÏdouble[] sides3 = shape.getSides();
Ï¼ÏÏsides3[0]
ÏÏÏÏ-1.0

Arrays - 16

“Aliases”
• Recall that encapsulation is achieved by

objects “protecting and managing” their own
information.

• If you return a reference to an array object (or
any object) in a method and it is modified by a
client program, does it support encapsulation?

• Lesson: be careful with reference variables as
parameters and return values

Arrays - 17

Array vs. ArrayList
• The ArrayList class has a field named

elementData which is an array that holds the
elements in the ArrayList.

• The ArrayList class provides methods for add,
get, size, remove, isEmpty, contains, etc. to
manage the elementData array

• For array types, the programmer must manage
array by providing the operations above as
needed

• The array is defined in most high level
languages; whereas the ArrayList is provided in
the Java class library, and thus is an extension to
the Java language.

Arrays - 18

Array vs. ArrayList
• Recall that the length of an array object cannot

be changed. Thus, you would have to create a
whole new array with the new length and copy
all of the elements over.

• To insert an element at the index i of the array,
you’ll have to copy (move) the elements to the
right to make room for the new element and
increase the number of elements by one

• To delete an element at the index i in the array,
you’ll have to copy (move) the elements to the
right of the element over one to the left and
reduce the number of elements by one

• See deleteTriangle method in TriangleList2.java

Arrays - 19

Command-Line Arguments
• The signature of the main method indicates that it takes

an array of String objects as a parameter

public static void main(String[] args)

• The args array comes from command-line arguments
that are provided when the Java interpreter is invoked
(for example, in the command prompt or terminal)

Arrays - 20

Command-Line Arguments
• Consider running the PolygonClassifier program:

• For ease of testing your program, command line
arguments can also by passed in via jGRASP.
PolygonClassifier.java

args[2]args[1]args[0]Name of class

Arrays - 21

Variable Length Parameter
Lists

• Suppose we wanted to create a method that processed
a different amount of data from one invocation to the
next

• For example, let's define a method called average that
returns the average of a set of integer parameters

// one call to average three values
mean1 = average (42, 69, 37);

// another call to average seven values
mean2 = average (35, 43, 93, 23, 40, 21, 75);

Arrays - 22

Variable Length Parameter
Lists

• We could define multiple versions of the
average method (each taking a different
number of parameter inputs)

§ Downside: a separate version of the method would
be needed for each parameter count

• We could define the method to accept an array
of integers

§ Downside: an array would need to be created and
initialized prior to calling the method each time

• Instead, Java provides a convenient way to
create a variable length parameter list

Arrays - 23

Variable Length Parameter
Lists

• We can define a method to accept any number of
parameters of the same type

• The parameters are automatically put into an array
with a specified variable name

public double average (int ... list)

element
type

array
name

Indicates a variable length parameter list

Arrays - 24

Variable Length Parameter
Lists

public double average (int ... list)
{

double result = 0.0;

if (list.length != 0) {
int sum = 0;
for (int num : list) {

sum += num;
}
result = (double) sum / list.length;

}

return result;
}

VariableParams.java

Arrays - 25

Variable Length Parameter
Lists

• The type of the parameter can be any
primitive type or object type

public String allPolygons(Polygon ... polygonSet) {

String output = "";
for (Polygon shape : polygonSet) {

output += shape + " ";
}
return output;

}

Arrays - 26

Variable Length Parameter
Lists

• A method that accepts a variable number of
parameters can also accept other parameters

• The following method accepts an int, a
String object, and a variable number of
double values into an array called nums

public void test(int count, String name, double ... nums)

Arrays - 27

Variable Length Parameter
Lists

• A method can only accept one variable length
parameter list

• If there are other parameters, the variable
length parameter list must come last in the
formal parameters

• A variable length parameter list can also be
used with constructors

• See Family.java in the book.

Arrays - 28

Two-Dimensional Arrays
• A one-dimensional array stores a list of

elements
• A two-dimensional array can be thought of as

a table of elements, with rows and columns

one
dimension

two
dimensions

Arrays - 29

Two-Dimensional Arrays
• A two-dimensional array is an “array of arrays”
• A two-dimensional array is declared by

specifying the size of each dimension
separately:

int[][] scores = new int[12][50];

• A single element is referenced using two index
values:
int value = scores[3][6];

• The array stored in one row can be specified
using one index

int[] valueSet = scores[3];

Arrays - 30

Two-Dimensional Arrays

Expression Type Description
table int[][] 2D array of integers,

or
array of integer arrays

table[5] int[] array of integers
table[5][12] int integer

• Examples:
TwoDArraySumElements.java
TwoDArraySumElementsForEach.java
TwoDArraySums.java

Arrays - 31

Multidimensional Arrays
• An array can have many dimensions – if it has

more than one dimension, it is called a
multidimensional array

• Because each dimension is an array of array
references, the arrays within one dimension can
be of different lengths
§ these are sometimes called ragged arrays

int[][] raggedExample = { {1,2,3,4},
{5,6},
{7,8,9} };

